SemesterSpring Semester, 2025
DepartmentProgram(master level)
Course NameDeep Learning
Instructor
Credit3.0
Course TypeRequired
Prerequisite
Course Objective
Course Description
Course Schedule

 



課程要求




  • You must have access to GPU equipped with at least 6GB of memory.












































































































週次



日期



課程內容



備註(當周二)



1



2025-02-20



介紹與機器學習基礎

(Introduction & Machine Learning Basics)





 



2



2025-02-27



深度網路

(Deep Networks )



Lab 0 Warm up



3



2025-03-06



卷積神經網路

(Convolutional Networks)



 



 



4



2025-03-13



Transformers



Lab 1 CNN



5



2025-03-20



Introduction to Reinforcement Learning



 



 



6



2025-03-27



線性因子模型與自動編碼器

(Linear Factor Models &

Autoencoders)



遞迴與循環神經網路

(Recurrent and Recursive Nets)



7



2025-04-03

(清明連假)



 



 



8



2025-04-10



Valued Based Reinforcement Learning



生成對抗網路

(Generative Adversarial Networks)



9



2025-04-17



擴散模型

(Diffusion Models)



Lab 2 Discrete control (Games, e.g., Atari)



 



10



2025-04-24



 



規範化流程

(Normalizing Flows)





Lab 3 Diffusion (+GAN)



11



2025-05-01



Policy-based Reinforcement Learning



 



 



12



2025-05-08



 



Offline RL



 



13



2025-05-15



尚在確認中



 



14



2025-05-22



尚在確認中



 



15



2025-05-29



期末考試

(Final Exam)



 



16



2025-06-05



尚在確認中



Teaching Methods
Teaching Assistant
Requirement/Grading

4 Labs (done individually) 80%



Final exam 20%

 



課程要求




  • You must have access to GPU equipped with at least 6GB of memory


Textbook & Reference

1. I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, 1st Ed.,MIT Press, Dec. 2016



2. R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, 2nd edition, Nov. 2018


Urls about Course
課程連結: https://meet.google.com/enc-fvqf-iie(優先使用此連結first choice)、https://www.youtube.com/channel/UCKLmWy7V3RXEJpSLvKrTrpg how to join NTU COOL https://reurl.cc/WNO2ge
Attachment